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For a function analytic in the unit disc the concepts of Gelfond-Leont’ev-Sǎlǎgen and
Gelfond-Leont’ev-Ruscheweyh derivatives of n-th order are introduced and the asymptotic
behaviour of the maximal terms of their power development as n→∞ is investigated.

М. Н. Шеремета. О максимальных членах последовательных производных Гельфонда-
Леонтьева-Салагена и Гельфонда-Леонтьева-Рушевая аналитических в единичном круге
функций // Мат. Студiї. – 2012. – Т.37, №1. – C.58–64.

Для аналитической в единичном круге функции введены понятия производных Гель-
фонда-Леонтьева-Салагена и Гельфонда-Леонтьева-Рушевая n-го порядка и исследовано
асимптотическое поведение максимальных членов их степенных розложений при n→∞.

1. Introduction. For formal power series f(z) =
∞∑
k=0

fkz
k and l(z) =

∞∑
k=0

lkz
k (lk > 0) the

formal power series

Dn
l f(z) =

∞∑
k=0

lk
lk+n

fk+nz
k

is called the Gelfond-Leont’ev derivative ([1]). If l(z) = ez (i.e. lk = 1/k!) then Dn
l f = f (n)

is a usual derivative. Further we assume that l0 = 1.
Let H be a class of analytic in the disk {z : |z| < 1} functions given by power series

f(z) = z +
∞∑
k=2

fkz
k (1)

with the radius of convergence R[f ] = 1 and the operator Dn
[S]f (n ≥ 0) be defined by

D0
[S]f(z) = f(z), D1

[S]f(z) = D[S]f(z) = zf ′(z) and

Dn
[S]f(z) = D[S](D

n−1
[S] f(z)) = z +

∞∑
k=2

knfkz
k.
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The operator Dn
[S]f is known as the Sǎlǎgean derivative ([2]). For f ∈ H

Dn
[R]f(z) =

z

n!

dn

dzn
{zn−1f(z)} = z +

∞∑
k=2

(k + n− 1)!

n!(k − 1)!
fkz

k

is called the Ruscheweyh derivative ([3]).
Combining the definitions of Gelfond-Leont’ev derivative with Sǎlǎgean derivative and

Ruscheweyh derivative we obtain for f ∈ H

Dn
[GLS],lf(z) = l1zD

1
l (D

n−1
[GLS],lf(z)) = z +

∞∑
k=2

(
l1lk−1
lk

)n
fkz

k (2)

and

Dn
[GLR],lf(z) = zlnD

n
l {zn−1f(z)} = z +

∞∑
k=2

lk−1ln
ln+k−1

fkz
k. (3)

The operator Dn
[GLS],l will be called the Gelfond-Leont’ev-Sǎlǎgean derivative and the opera-

tor Dn
[GLR],l will be called the Gelfond-Leont’ev-Ruscheweyh derivative.

We denote κk = lk/lk+1 (k ≥ 0) and remark that Dn
[GLR],lf ∈ H for every f ∈ H and

all n ≥ 1 if and only if k
√κk → 1 (k → ∞). Indeed, k

√κk → 1 (k → ∞) if and only if
k
√
lk−1/lk → 1 (k → ∞). If k

√
lk−1/lk → 1 (k → ∞) then k

√
lk−1/lk+n−1 → 1 (k → ∞) for

every n ≥ 1 and, thus, lim
k→∞

k
√

(lnlk−1/lk+n−1)|fk| = lim
k→∞

k
√
|fk| = 1, that is Dn

[GLR],lf ∈ H.

On the other hand, if kj

√
lkj−1/lkj → α 6= 1 (j →∞) for some sequence (kj) ↑ ∞ then we put

fkj = 1 and fk = 0 for k 6= kj. Hence f ∈ H and for n = 1 we have lim
k→∞

k
√

(l1lk−1/lk)|fk| =
lim
j→∞

kj

√
lkj−1/lkj = α, that is D1

[GLR],lf 6∈ H.

By analogy we can prove that Dn
[GLS],lf ∈ H for every f ∈ H and all n ≥ 1 if and only

if k
√κk → 1 (k →∞).

Let µ(r, f) = max{|fn|rn : n ≥ 1} be the maximal term of series (1) and ν(r, f) =
max{n : |fn|rn = µ(r, f)} be its central index. Then ν(r, f) ≥ 1 for all r ∈ [0, 1) and
µ(r, f) = |fν(r,f)|rν(r,f).

Further we investigate asymptotic behaviour of the sequences (ν(r,Dn
[GLS],lf)),

(µ(r,Dn
[GLS],lf)), (ν(r,Dn

[GLR],lf)) and (µ(r,Dn
[GLR],lf)) as n→∞.

2. Growth of the sequences of maximal terms and central indices. Here we prove
the following theorem.

Theorem 1. Let k
√κk → 1 (k →∞). If the sequence (κk) is nondecreasing then for every r ∈

[0, 1) the sequences (ν(r,Dn
[GLS],lf)), (µ(r,Dn

[GLS],lf)), (ν(r,Dn
[GLR],lf)) and (µ(r,Dn

[GLR],lf))

are nondecreasing. In particular, if κk ↗ ∞ (k → ∞) then ν(r,Dn
[GLS],lf) → ∞,

µ(r,Dn
[GLS],lf) → ∞, ν(r,Dn

[GLR],lf) → ∞ and µ(r,Dn
[GLR],lf) → ∞ as n → ∞ for every

r ∈ [0, 1).

Proof. If we denote Dn = Dn
[GLS],lf then in view of (2) we have

µ(r,Dn+1) =

(
lν(r,Dn+1)−1l1

lν(r,Dn+1)

)n+1

|fν(r,Dn+1)|rν(r,D
n+1) =
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=
lν(r,Dn+1)−1l1

lν(r,Dn+1)

(
lν(r,Dn+1)−1l1

lν(r,Dn+1)

)n
|fν(r,Dn+1)|rν(r,D

n+1) ≤
lν(r,Dn+1)−1l1

lν(r,Dn+1)

µ(r,Dn).

On the other hand,

µ(r,Dn) =

(
lν(r,Dn)−1l1
lν(r,Dn)

)n
|fν(r,Dn)|rν(r,D

n) =

=
lν(r,Dn)

lν(r,Dn)−1l1

(
lν(r,Dn)−1l1
lν(r,Dn)−1

)n+1

|fν(r,Dn)|rν(r,D
n) ≤

lν(r,Dn)

lν(r,Dn)−1l1
µ(r,Dn+1).

Thus, for all n ≥ 0 and r ∈ [0, 1)

lν(r,Dn
[GLS],l

f)−1l1

lν(r,Dn
[GLS],l

f)

≤
µ(r,Dn+1

[GLS],lf)

µ(r,Dn
[GLS],lf)

≤
lν(r,Dn+1

[GLS],l
f)−1l1

lν(r,Dn+1
[GLS],l

f)

. (4)

Using (3) by analogy we obtain for all n ≥ 0 and r ∈ [0, 1)

ln+1

ln

lν(r,Dn
[GLR],l

f)+n−1

lν(r,Dn
[GLR],l

f)+n

≤
µ(r,Dn+1

[GLR],lf)

µ(r,Dn
[GLR],lf)

≤ ln+1

ln

lν(r,Dn+1
[GLR],l

f)+n−1

lν(r,Dn+1
[GLR],l

f)+n

. (5)

Since the sequence (κk) is nondecreasing from (4) and (5) it follows that

κν(r,Dn
[GLS],l

f)−1 ≤ κν(r,Dn+1
[GLS],l

f)−1, κν(r,Dn
[GLR],l

f)+n−1 ≤ κν(r,Dn+1
[GLR],l

f)+n−1

and, thus,

ν(r,Dn
[GLS],lf) ≤ ν(r,Dn+1

[GLS],lf), ν(r,Dn
[GLR],lf) ≤ ν(r,Dn+1

[GLR],lf)

for all n ≥ 0 and r ∈ [0, 1). But ν(r,Dn
[GLS],lf) ≥ 1 and ν(r,Dn

[GLR],lf) ≥ 1 for all n ≥ 0 and
r ∈ [0, 1). Therefore, in view of the nondecrease of (κk) we have

lν(r,Dn
[GLS],l

f)−1l1

lν(r,Dn
[GLS],l

f)

≥ 1,
ln+1

ln

lν(r,Dn
[GLR],l

f)+n−1

lν(r,Dn
[GLR],l

f)+n

≥ 1

and from (4) and (5) it follows also that

µ(r,Dn
[GLS],lf) ≤ µ(r,Dn+1

[GLS],lf), µ(r,Dn
[GLR],lf) ≤ µ(r,Dn+1

[GLR],lf)

for all n ≥ 0 and r ∈ [0, 1). Thus, the first part of Theorem 1 is proved.
Now let κk ↗∞ (k →∞). We assume on the contrary that ν(r0, D

n
[GLS],lf) ≤ K < +∞

for some r0 ∈ [0, 1) and all n ≥ 1. Since ν(r,Dn
[GLS],lf) takes positive integer values, one has

that ν(r0, D
n
[GLS],lf) = p0 = const for all n ≥ n0 and µ(r0, D

n
[GLS],lf) =

(
l1lp0−1
lp0

)n
|fp0|r

p0
0 .

Let k0 = min{k > p0 : fk 6= 0}. Then

1 ≥ (l1lk0−1/lk0)
n|fk0|rk00

(l1lp0−1/lp0)
n|fp0|r

p0
0

=

(
κk0−1
κp0−1

)n |fk0|
|fp0 |

rk0−p00 →∞, n→∞,

and it is impossible.
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By analogy, if ν(r0, D
n
[GLR],lf) ≤ K < +∞ for some r0 ∈ [0, 1) and all n ≥ 1 we obtain

as above

1 ≥ (lk0−1ln/ln+k0−1)|fk0 |rk00
(lp0−1ln/ln+p0−1)|fp0|r

p0
0

=
ln+p0−1
ln+k0−1

lk0−1
lp0−1

|fk0 |
|fp0|

rk0−p00 =

=
lk0−1
lp0−1

|fk0|
|fp0|

rk0−p00

n+k0−2∏
j=n+p0−1

κj →∞, n→∞,

and it is impossible.
Thus, ν(r,Dn

[GLS],lf) ↗ ∞ and ν(r,Dn
[GLR],lf) ↗ ∞ as n → ∞ and from (4) and (5) it

follows that µ(r,Dn
[GLS],lf) ↗ ∞ and µ(r,Dn

[GLR],lf) ↗ ∞ as n → ∞ for every r ∈ [0, 1).
The proof of Theorem 1 is complete.

3. Some estimates. It is clear that µ(r,Dn
[GLS],lf) = max{(l1κk−1)n|fk|rk : k ≥ 1}. Since

l0 = 1 by definition of κn we have lk =
k−1∏
j=0

1

κj
. Therefore,

lk−1ln
ln+k−1

=
k−2∏
j=0

1

κj

n−1∏
j=0

1

κj

n+k−2∏
j=0

κj =
n−1∏
j=0

1

κj

n+k−2∏
j=k−1

κj =
n−1∏
j=0

κj+k−1
κj

that is

µ(r,Dn
[GLR],lf) = max

{
|fk|rk

n−1∏
j=0

κj+k−1
κj

: k ≥ 1

}
. (6)

Now we put ηk =
l2k

lk−1lk+1

(k ≥ 1) and suppose that the sequence (ηk) is nonincreasing.

Then κn = ηnκn−1 = ηnηn−1κn−2 = · · · = κ0

n∏
m=1

ηm = 1
l1

n∏
m=1

ηm and

κj+k−1 =
1

l1

j+k−1∏
m=1

ηm = κj
j+k−1∏
m=j+1

ηm = κj
k−1∏
m=1

ηm+j ≤ κj
k−1∏
m=1

ηm ≤ l1κjκk−1.

Therefore, from (6) we obtain

µ(r,Dn
[GLR],lf) ≤ max

{
|fk|rk

n−1∏
j=0

(l1κk−1) : k ≥ 1

}
= max

{
(l1κk−1)n|fk|rk : k ≥ 1

}
.

Thus, the following proposition is true.

Proposition 1. If k
√κk → 1 (k →∞) and the sequence (ηk) is nonincreasing then

µ(r,Dn
[GLR],lf) ≤ µ(r,Dn

[GLS],lf).

We remark that if κk ↗ κ < ∞ (k → ∞) and the sequence (ηk) is nonincreasing then
µ(r,Dn

[GLR],lf) ≤ µ(r,Dn
[GLS],lf) ≤ (l1κ)nµ(r, f) for every r ∈ [0, 1) and all n ≥ 1. The

estimates are sharp because for l(z) = 1/(1 − z) we have lk = 1, κk = 1 for all k ≥ 0 and
µ(r,Dn

[GLR],lf) = µ(r,Dn
[GLS],lf) = µ(r, f).
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Therefore, further we will investigate an asymptotic behaviour only of µ(r,Dn
[GLS],lf)

provided κk ↑ +∞ (k → ∞). Putting λk = ln(l1κk−1) and ak = |fk|rk we consider the
functional sequence Fr(σ) = (ake

σλk). If k
√κk → 1 (k →∞) then the maximal term µ̂(σ) =

µ̂(σ, Fr) = max{akeσλk : k ≥ 1} of Fr(σ) exsists for all σ ∈ R and µ(r,Dn
[GLS],lf) = µ̂(n, Fr)

for every r ∈ [0, 1) and all n ≥ 1. We can interpret µ̂(σ) as the maximal term of an entire
Dirichlet series. The relations between the growth of the maximal term of entire Dirichlet
series and its coefficients are well studied. Using such relations we can obtain various results
on behaviour of µ(r,Dn

[GLS],lf). Here we dwell on the following well known formula

lim
σ→+∞

ln ln µ̂(σ, Fr)

σ
= lim

k→∞

λk lnλk
− ln ak

, (7)

which correspondes to functions of finite R-order in the theory of Dirichlet series.

Theorem 2. Let f ∈ H, κk ↑ ∞ (k → ∞) and ρ : = lim
k→∞

lnκk ln lnκk
k

< +∞. Then for
every r ∈ (0, 1)

lim
n→∞

ln lnµ(r,Dn
[GLS],lf)

n
≤ ρ

| ln r|
, (8)

and if k
√
|fk| → 1 (k →∞) then in (8) the sign (≤) can be replaced with the sign (=).

Proof. Since ρ <∞ we have
lnκk
k
→ 0 and, therefore, k

√κk → 1 (k →∞). From the equality

lim
k→∞

k
√
|fk| = 1 we obtain ln |fk| ≤ εk for every ε > 0 and k ≥ k0(ε) that is ln(|fk|rk) ≤

−(1 + o(1))k| ln r| (k → ∞). Therefore, from (7) in view of the equalities λk = ln(l1κk−1)
and ak = |fk|rk we have

lim
σ→+∞

ln ln µ̂(σ, Fr)

σ
≤ lim

k→∞

lnκk ln lnκk
k| ln r|

=
ρ

| ln r|
. (9)

Since ln µ̂(σ, Fr) ↗ +∞ (σ → +∞) and µ(r,Dn
[GLS],lf) = µ̂(n, Fr), we obtain that (8) is

valid.
If k
√
|fk| → 1 (k →∞) then ln(|fk|rk) = −(1 + o(1))k| ln r|(k →∞) and we can replace

(≤) with (=) in (9) and in (8) respectively.

Now we consider the case, when lk = 1/k!. Then µ(r,Dn
[GLS],lf) = µ(r,Dn

[S]f),
µ(r,Dn

[GLR],lf) = µ(r,Dn
[R]f) and the following theorem is true.

Theorem 3. For every r ∈ (0, 1)

lim
n→∞

lnµ(r,Dn
[R]f)

n lnn
≤ lim

n→∞

lnµ(r,Dn
[S]f)

n lnn
≤ 1 (10)

and if lim
k→∞

k
√
|fk| = γ ∈ (0, 1] then lnµ(r,Dn

[S]f) ∼ n lnn as n→∞.

Proof. Since lk = 1/k! we have κk = k + 1 and µ(r,Dn
[S]f) = µ̂(n), where µ̂(σ) =

max{|fk|rkeσ ln k : k ≥ 1}. We remark that if µ(σ) is the maximal term of the functional
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sequence (e−Ak+σ ln k), A > 0, and ν(σ) is its central index then ν(σ) = σ/A + α(σ),
|α(σ)| ≤ 1, and

lnµ(σ) = −A
( σ
A

+ α(σ)
)

+ σ ln
( σ
A

+ α(σ)
)

= (1 + o(1))σ lnσ

as σ → +∞. Therefore, since ln(|fk|rk) ≤ −(1 + o(1))k| ln r| as k →∞, we obtain ln µ̂(σ) ≤
(1 + o(1))σ lnσ, σ → +∞, and, thus, the last inequality in (10) holds. The first inequality
in (10) follows from Proposition 1.

If lim
k→∞

k
√
|fk| = γ ∈ (0, 1] then ln µ̂(σ) ≥ (1 + o(1))σ lnσ, σ → +∞, and, therefore,

lnµ(r,Dn
[S]f) = ln µ̂(n) ∼ n lnn as n→∞. The proof of Theorem 3 is complete.

The condition lim
k→∞

k
√
|fk| = γ ∈ (0, 1] is not necessary for lnµ(r,Dn

[S]f) ∼ n lnn as

n→∞. In order to find such a condition we use one result from [4].
Let Ω be the class of positive unbounded on (−∞,+∞) functions Φ such that the deri-

vative Φ′ is positive, continuous and increasing to +∞ on (−∞,+∞). We denote by ϕ the
inverse function to Φ′, and let Ψ(σ) = σ − Φ(σ)/Φ′(σ) be the function associated with Φ in
the sense of Newton.

Lemma 1 ([4]). Let Φ ∈ Ω and let the function Φ′/Φ be nonincreasing. As above, let
µ̂(σ) = max{akeσλk : k ≥ 1}. In order that ln µ̂(σ) ∼ Φ(σ) as σ → +∞, it is necessary and
sufficient that for every ε > 0:

1) there exists k0 = k0(ε) such that ln ak ≤ −λkΨ(ϕ(λk/(1 + ε))) for all k ≥ k0;

2) there exists an increasing sequence (kj) of positive integers such that ln akj ≥ −λkj×
×Ψ(ϕ(λkj/(1− ε))) for all j ≥ 1 and λkj/λkj+1

→ 1 as j →∞.

If we choose Φ ∈ Ω such that Φ(σ) = σ lnσ for σ ≥ σ0 then xΨ(ϕ(x)) = ex−1 for x ≥ x0.
Therefore, using Lemma 1 with ak = |fk|rk and λk = ln k we obtain the following statement.

In order that ln µ̂(σ) ∼ σ lnσ as σ → +∞, it is necessary and sufficient that for every
ε > 0:

1) there exists k0 = k0(ε) such that ln(|fk|rk) ≤ −
1 + ε

e
k1/(1+ε) for all k ≥ k0;

2) there exists an increasing sequence (kj) of positive integers such that ln(|fkj |rkj) ≥

−1− ε
e

k
1/(1−ε)
j for all j ≥ 1 and ln kj/ ln kj+1 → 1 as j →∞.

The condition ln(|fk|rk) ≤ −1+ε
e
k1/(1+ε) is equivalent to the condition

| ln r| − ln |fk|
k
≥ 1 + ε

e
k−ε/(1+ε)

and holds for k ≥ k0 because of lim
k→∞

ln |fk|
k

= 0.

The condition ln(|fkj |rkj) ≥ −1−ε
e
k
1/(1−ε)
j holds if and only if

kj

√
|fkj | ≥ exp

{
−1− ε

e
k
ε/(1−ε)
j − ln r

}
.

In view of arbitrariness of ε, the last condition is equivalent to the condition kj

√
|fkj | ≥

exp
{
−kεj

}
. Thus, the following proposition is proved.
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Proposition 2. In order that lnµ(r,Dn
[S]f) ∼ n lnn (n → ∞) for every r ∈ (0, 1) it is

necessary and sufficient that for every ε > 0 there exists an increasing sequence (kj) of
positive integers such that kj

√
|fkj | ≥ exp

{
−kεj

}
and ln kj+1 ∼ ln kj as j →∞.
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2. Sǎlǎgean G.St. Subclasses of univalent functions// Lecture Notes in Math. – 1983. – V.1013. – P. 362–372.
3. Ruscheweyh St. New criteria for univalent functions// Proc. Amer. Math. Soc. – 1975. – V.49. – P. 109–

115.
4. Zabolotskyi M.V., Sheremeta M.M. A generalisation of Lindelöff theorem// Ukr. Mat. Zh. – 1998. – V.50,
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