Maremaruuni Crymii. T.37, Nel Matematychni Studii. V.37, No.1

YIOK 517.537
M. M. SHEREMETA

ON THE MAXIMAL TERMS OF SUCCESSIVE GELFOND-
LEONT’EV-SALAGEAN AND GELFOND-LEONT’EV-RUSCHEWEYH
DERIVATIVES OF A FUNCTION ANALYTIC IN THE UNIT DISC

M. M. Sheremeta. On the maximal terms of succesive Gelfond-Leont’ev-Salagen and Gelfond-
Leont’ev-Ruscheweyh derivatives of a function analytic in the unit disc, Mat. Stud. 37 (2012),
58—-64.

For a function analytic in the unit disc the concepts of Gelfond-Leont’ev-Salagen and
Gelfond-Leont’ev-Ruscheweyh derivatives of n-th order are introduced and the asymptotic
behaviour of the maximal terms of their power development as n — oo is investigated.
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JJisi aHAJIMTUYIECKON B €MHUIHOM KpyTe (DYHKIINU BBEICHBI MOHATHUS IIPOU3BOIHBIX | €Jib-
donna-JleonrneBa-Casnarena u [eapdonma-Jleonrresa-Pymesas n-ro nopsaka u ucciemoBaso
ACHMITOTHIECKOE TIOBEJIEHIE MAKCUMAJIHLHBIX YJIEHOB X CTEIEHHBIX PO3JIOXKEHUN IIpH 1 — O0.

1. Introduction. For formal power series f(2) = Y. fpz¥ and I(2) = > I;2% (I, > 0) the
k=0 k=

formal power series

Z

is called the Gelfond-Leont’ev derivative ([1]). If [(z) = €* (i.e. I = 1/k!) then DPf = f™
is a usual derivative. Further we assume that [; = 1.
Let H be a class of analytic in the disk {z: |z| < 1} functions given by power series

fk-l—nz
lk+n

):Z—l—z,szk (1)

with the radius of convergence R[f] = 1 and the operator Dig f (n > 0) be defined by
Digf(2) = [(2), Digf(2) = Dy f(2) = 2f'(2) and

D f(2) = Dis(Djg " f(2) z+2k"sz
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The operator Dfy f is known as the Saldgean derivative ([2]). For f € H

z d® Ookn—
() = 2L () = Z + 1 fot

nldzn

is called the Ruscheweyh derivative ([3]).
Combining the definitions of Gelfond-Leont’ev derivative with Salagean derivative and
Ruscheweyh derivative we obtain for f € H

Digrgf(z) = l,2D} (D GL1S]l = E ( 10k— 1) Fook @)
and
Digrpf(2) = 2 Di{z" " f(2)} = 2 + Z z: ) o (3)

The operator D[”GLS]J will be called the Gelfond-Leont ev-Salagean derivative and the opera-
tor DFG LR will be called the Gelfond-Leont’ev-Ruscheweyh derivative.

We denote s, = lp/lj11 (k > 0) and remark that Dig;p,f € H for every f € H and
all m > 1 if and only zf ¥, — 1(k — o0). Indeed, /3¢, — 1(k — o0) if and only if
-1 /lg = 1(k — 00). If §/lx—1/lx — 1(k — o0) then /lj—1/lx1n-1 — 1(k — o0) for
every n > 1 and, thus, kh_)m \/(l L1/ Uksn— 1)]fk] = hm \/W = 1, that is DFGLRNf € H.
On the other hand, if /Ty, 1/ly, = o # 1(j — o0) for some sequence (k;) 1 oo then we put
fr; =1 and fi, = 0 for k # k;. Hence f € H and for n = 1 we have k@ (=1 /le) | fx] =

lim %/lg,~1/lx, = c, that is DlGLR W ¢ H.

]—)

By analogy we can prove that D[GLS f € H for every f € H and all n > 1 if and only
if ¥/, — 1(k — 00).

Let p(r, f) = max{|f,|r": n > 1} be the maximal term of series (1) and v(r, f) =
max{n: |f,|r"™ = wu(r, f)} be its central index. Then v(r, f) > 1 for all » € [0,1) and
M(ﬁ f) = ’fu(r,f)’ry(T’f)'

Further we investigate asymptotic behaviour of the sequences (v(r, Digpg,f)),
(u(r, Diggpsuf)), (W(r, Digrgyf)) and (u(r, Dig gy 1 f)) as n — .

2. Growth of the sequences of maximal terms and central indices. Here we prove
the following theorem.

Theorem 1. Let /35, — 1 (k — o0). If the sequence (3z,) is nondecreasing then for every r €
[0,1) the sequences (v(r, D%LS},zf)); ((r, DFGLS],Zf))? (v(r, DFGLR],If)) and (p(r, D%LR]lf))
are nondecreasing. In particular, if s, oo(k — o0) then v(r, DFGLS},lf) — 00,
(r, Diggpg0f) — 00, v(r, Digpp,f) — oo and pu(r, Digpg f) — o0 as n — oo for every
re0,1).

Proof. 1f we denote D" = Di;; «, f then in view of (2) we have

n+1 ly(TD"+1)—1l1 m v(r,D™*1)
p(r, D") = | ——"—r | furpmiy| P =

ZV(T,D"+1)
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Lrprity-1ly (logpprsn)il iy Lyrpretyal

lu(r,D”Jrl) lu(r,D”+1) lu(r,D”+1)

On the other hand,

n Lur.omy—1li\" v(r.D"
H’(TaD ): ((— ‘fl/(r,D")|T (rD") =

lTD"

ll/T‘ n ll/T‘ n,l n lyr n
) ( (r,D")—1 1> P |70 < b ety
lV(r,D")—lll lu(r,D")—l ll/(r,D")—lll

Thus, for all n > 0 and r € [0, 1)

l”(’"D[Gm -1l < u(r, DnGES] f) lu(er L)1 1l
ll/(ﬁ [GLSLlf) N lu('r DGLS] lf) ZV(T,Dn+1 £

[GLs],

Using (3) by analogy we obtain for all n > 0 and r € [0, 1)

ln+1 l”(erfLGLR] (f+n—1 < M(T Dn [GLR], lf> <

ln—i—l l”(r DFJLR 1 F)+n—1
b b, e~ B Digpgyf) = ZV(TD"JLIR in

Since the sequence (s¢) is nondecreasing from (4) and (5) it follows that

< n < n
%V(TvDFGLs]Jf)*l — %V(T D[gl}s]lf) IR %V(T»D[TLGLR]’Zf)J”nfl — ( D[ LR]lf)Jr'rL 1

and, thus,
v(r, Digrsyuf) < v, Didiig f),  v(r, Digrgf) < vir D, f)

for all n > 0 and r € [0,1). But v(r, D55, f) = 1 and v(r, Digy p , f) = 1 for all n > 0 and
r € [0,1). Therefore, in view of the nondecrease of (sz;) we have

lV(’” Digrs)f)—1 ih > Iny1 lV(T’DFGLR] F+n—1 > 1

l v(r,DT - ln lu(rD

[GLS], o) [GLR], zf)

and from (4) and (5) it follows also that

pu(r, Digrsf) < plr, ngLls of)s 1 Digrgy, f) < ulr, DFC;FLlR] f)

for all n > 0 and r € [0,1). Thus, the first part of Theorem 1 is proved.
Now let s, 7 0o (k — 00). We assume on the contrary that v(r, Df‘GLS]’lf) <K <40
for some 1 € [0,1) and all n > 1. Since v(r, Ditrsf ) takes positive integer values, one has
Ll —1\"
that v(ro, Digpg,f) = po = const for all n > ng and pu(ro, Digpg,f) = ( 1;’0 1) | fpolTE0.
Po
Let ko = min{k > po: fx # 0}. Then

1> (lllko—l/lko)nlfko|rgo <%k0—1> |fko| ko—po

> = r — 00, N — 0
(lllpo—l/lpo)nlfpolrgo |fpo| 0 ’ ’

and it is impossible.

Hpy—1



ON THE MAXIMAL TERMS 61

By analogy, if v(ro, Digpp ,f) < K < +o0 for some 1y € [0,1) and all n > 1 we obtain
as above

(lkoflln/anrkO*l)'fko|T§O o ln+P0*1 lk()*l |fk0’ ko—po _

1> —
N (lprlln/ln+p071)|fpo|rgo Intko—1 lpo—1 ‘fpo‘ 0
l B n+ko—2
_ ko—1 |fko| lgofpo H % — 00, n — 00,
lpo—l ‘fpo‘ j=n+po—1

and it is impossible.

Thus, v(r, Digpe,f) /" o0 and v(r, Dig g, f) /* 00 as n — oo and from (4) and (5) it
follows that u(r, Digpg,f) /* 00 and pu(r, Digpp,f) /* 00 as n — oo for every r € [0,1).
The proof of Theorem 1 is complete. O

3. Some estimates. It is clear that p(r, Digpq,f) = max{ (lysg,_1)"| fe|r®: k > 1}. Since
k-1

1
lo = 1 by definition of s, we have l;, = [[ —. Therefore,
0 %

that is )
i
) = s i T 222021} ©
=0 7

li

lkfllkJrl

Then Apn = Tnn—-1 = Tnllh—1%n—2 = *** = H Nm = ll H hm and

Now we put 7, = (k > 1) and suppose that the sequence (7;) is nonincreasing.

| Ttk k-1 k—1 k-1
Hith-1 = - H Nm = % H Nm = % H Nm+j < % H N < lixjo0,1.
1
m=1

m=j+1 m=1 m=1
Therefore, from (6) we obtain

n—1

p(r, Digrpyf) < max {|fk|7’k H(llxk_l): k> 1} = max { (lys6,1)" | felr": k > 1}.

§=0
Thus, the following proposition is true.

Proposition 1. If {/3¢, — 1 (k — o0) and the sequence (1) is nonincreasing then

1(r, Digrryf) < w(r, Digrsif)-

We remark that if s, 7 3¢ < oo (k — o0) and the sequence (7;) is nonincreasing then
1(r, Digrpf) < wlr, Digrgf) < (Lize)"u(r, f) for every r € [0,1) and all n > 1. The
estimates are sharp because for I(z) = 1/(1 — z) we have [, = 1, ¢, = 1 for all £ > 0 and
:U/(T7 DFGLR]Jf) = M<T7 D[nGLS]Jf) = N(ﬂ f)
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Therefore, further we will investigate an asymptotic behaviour only of u(r, D[”GLSH f)
provided g 1 +o00(k — o00). Putting A\, = In(l;3¢,_1) and a; = |fx|r* we consider the
functional sequence F, (o) = (aye™*). If {/3q, — 1 (k — o00) then the maximal term ji(o) =
fi(o, F;) = max{aze™ : k > 1} of F,(0) exsists for all o € R and u(r, Dl g, f) = it(n, Fy)
for every r € [0,1) and all n > 1. We can interpret fi(c) as the maximal term of an entire
Dirichlet series. The relations between the growth of the maximal term of entire Dirichlet
series and its coefficients are well studied. Using such relations we can obtain various results
on behaviour of yi(r, Dig;q,f). Here we dwell on the following well known formula

— Inlnj(o, F.)  +— A ln)\k
lim —— = = lim
o—+o00 o k—oo — In ak

(7)

which correspondes to functions of finite R-order in the theory of Dirichlet series.

— 1 Inl
Theorem 2. Let f € H, s, 1T oo (k — o0) and p: = klim W < +o00. Then for
—00

every r € (0,1)
Inln pu(r, D
Tm ( [G’LS]lf> < p (8)

n—00 n = |lnr|’

and if {/|fx] — 1 (k — o0) then in (8) the sign (<) can be replaced with the sign (=).

k% % 5 0 and, therefore, /32, — 1 (k — 00). From the equality

km U/|fr] = 1 we obtain In|fy,| < ek for every € > 0 and k > ko(e) that is In(|fi|r*) <
—00

—(1 4 o(1))k|Inr| (k — o00). Therefore, from (7) in view of the equalities A\, = In(l35¢,_1)
and ay = | f|r* we have

Proof. Since p < oo we have

— Inlnj(o, F,) = —— Insglnlnsg, P
lim ———= < lim = .
o—400 o k—o00 k:| In T| ]1n 7“|

(9)

Since Inji(o, F;,) /* +o00 (0 — +00) and p(r, Digpg,f) = in, F}), we obtain that (8) is
valid.

If 3/1fx] = 1 (k— oo) then In(|fi]r*) = —(1 + o(1))k|In7|(k — oo) and we can replace
(<) with (=) in (9) and in (8) respectively. O

Now we consider the case, when Iy = 1/kl. Then u(r,Digrq,f) = n(r,Digf),
1(r, Digrpyf) = w(r, D f) and the following theorem is true.

Theorem 3. For every r € (0,1)

In p(r, D _ Inu(r, D
hm M < lim M <1 (10)
n—oo nlnn n— 00 nlnn

and if lim {/|fx| =~ € (0,1] then In u(r, Dig, f) ~ nlnn as n — oc.

k—oo

Proof. Since Iy = 1/k! we have sq, = k + 1 and u(r, Dy f) = jun), where fi(c) =
max{|fr|r*e™¥: k > 1}. We remark that if u(o) is the maximal term of the functional
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sequence (e~ Aktolnky A > (0 and v(o) is its central index then v(c) = o/A + a(o),
a(o)] < 1, and

Inp(o)=—-A <% + a(o)) +oln (% + a(a)) =(1+40(1))olno

as o — +00. Therefore, since In(| fx|r*) < —(1+o(1))k|Inr| as k — oo, we obtain In ji(c) <
(14 o0(1))olno, 0 — 400, and, thus, the last inequality in (10) holds. The first inequality
in (10) follows from Proposition 1.

If lim ¢/|f] = v € (0,1] then Inji(s) > (1 +o(1))olno, ¢ — +oo, and, therefore,

k—o0

In p(r, D f) =Infi(n) ~ nlnn as n — oo. The proof of Theorem 3 is complete. O

The condition lim {/|fx| = 7 € (0,1] is not necessary for Iny(r, D f) ~ nlnn as
k—o0
n — oo. In order to find such a condition we use one result from [4].

Let €2 be the class of positive unbounded on (—oo, +00) functions ® such that the deri-
vative @’ is positive, continuous and increasing to +0o on (—o00,+00). We denote by ¢ the
inverse function to @', and let V(o) = o0 — ®(0)/P'(0) be the function associated with & in
the sense of Newton.

Lemma 1 (|4]). Let ® € Q and let the function ®/® be nonincreasing. As above, let
i(0) = max{ape®: k > 1}. In order that Infi(c) ~ ®(0) as ¢ — +o00, it is necessary and
sufficient that for every ¢ > 0:

1) there exists ko = ko(e) such that Inay < — W (o(A\/(1+¢))) for all k > ky;

2) there exists an increasing sequence (k;) of positive integers such that Inag, > —MA, ¥
xW(p(Ar, /(1 —¢))) forall j > 1 and A, /Ag,,, — 1 as j — oo.

G
If we choose ® € 2 such that ®(c) = olno for 0 > o¢ then 2¥(p(z)) = *! for z > x.
Therefore, using Lemma 1 with a; = |f|r* and Ay = In k we obtain the following statement.
In order that Inji(c) ~ olno as 0 — 400, it is necessary and sufficient that for every
e>0:

1
1) there exists kg = ko() such that In(| fy|r*) < — e

——EYO+) for all k > k;

2) there exists an increasing sequence (k;) of posmve integers such that In(|fy,|r*) >

1
——k:l/l “ forall j > 1 and Ink;/Ink; . — 1 as j — oo.
e

The condition In(| fi|r¥) < —1£k1/0+9) is equivalent to the condition

|1n7‘| . lnl{:fk’ Z 1 +€k;_€/(1+5)

e
and holds for k > ky because of klim %f’“l =0.
—00

The condition In(] fi,|r*) > —%k:;/(l_g) holds if and only if

1-— _
e exp{— £ pe/1-2 —m}.
(&

In view of arbitrariness of ¢, the last condition is equivalent to the condition %/|fi,| >
exp {—kj} Thus, the following proposition is proved.
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Proposition 2. In order that Inyu(r, Dig f) ~ nlnn(n — oo) for every r € (0, 1) it is
necessary and sufficient that for every ¢ > 0 there exists an increasing sequence (k;) of
positive integers such that %/|fx,| > exp {—kj} and Ink; ; ~Ink; as j — oo.
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